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2008 Estimated US Cancer Deaths”
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Cancer Death Rates®* Among Women,
US,1930-2004

Rate Per 100,000
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Age-adjusted to the 2000 US standard population.
Source: US Mortality Data 1960-2004, US Mortality Volumes 1930-1959,




Cancer Death Rates* Among Men, US,1930-
2004

Rate Per 100,000
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*Age-adjusted to the 2000 US standard population.
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Source: Death rates: US Mortality Data, 1960-2604, US Mortality Volumes, 1930-1959, National Center for Health




Imaging




Sensing, Detection and Imaging

Photons
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Ultrasound Imaging
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Positron Emission Tomography

Radioactive isotope
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Penetrates Earth's N \

Atmosphere?
Radiation Type = Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m)  10° 1072 5x107° 10°® 107 107
Approximate Scale : (i\
of Wavelength : .&
Buildings Humans Butterflies Needle Point Protozoans Molecules  Atoms Atomic Nuclei
Frequency (Hz)

10* 108 10* 10" 10 10* 10%°

Temperature of
objects at which
this radiation is the
most intense
wavelength emitted

)

1K 100 K 10,000 K 10,000,000 K
=272 °C -173 °C 9,727 °C ~10,000,000 °C




Once upon a time...

1901-Physics




Photoelectric Effect

1921-Physics- ..discovery of laws of PE




Compton Scattering (Inelastic)

A QUANTUM THEORY OF THE SCATTERING OF X-RAYS
BY LIGHT ELEMENTS

By ArTtHUR H. CoMPTON

ABSTRACT

A quantum theory of the scattering of X-rays and v-rays by light elements.
Nobel Prize —The hypothesis is suggested that when an X-ray quantum is scattered %t

spends all of its energy and momentum upon some particular electron. This
N PhySiCS (1927) electron in turn scatters the ray in some definite direction. The change in
momentum of the X-ray quantum due to the change in its direction of propaga-
tion results in a recoil of the scattering electron. The energy in the scattered
quantum is thus less than the energy in the primary quantum by the kinetic
energy of recoil of the scattering electron. The corresponding increase in the
wave-length of the scattered beam is Ng — Ao = (2h/mc) sin® 30 = 0.0484 sin? 16,
where & is the Planck constant, m is the mass of the scattering electron, ¢ is
the velocity of light, and @ is the angle between the incident and the scattered

Arthur H. Compton, The Physical Review (May 1923)
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Attenuation
(G E) = 1%y, E,)exp(- [ u(r, E,)dz)
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Mammography- Low Tissue Contrast
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Example of Missed Lesion
hvasive Ductal Carcinoma

ears: 1985




Digital Breast Tomosynthesis

Potential to Reduce False-Negative Diaghosis
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D. B. Kopans, MGH




Computed Tomography (CT)

Radon Transform

Inverse Radon

Image Reconstruction

Filtered Back Projection




Zernike

Frits Zernike
Physics Nobel Prize 1953
Phase contrast optical microscope




Wave Nature of X-Rays

Interference

Add together Cancel each other Slit plate1 Slit plate2




X-Ray Phase-Contrast Imaging (PClI)

Phase changes (or refractive properties) — contrast mechanism
n(E) =1-6(E) —if(E)

6(E) >> B(E)

PMMA

Electron density

Potential to image at high energy (low dose)




In-Line Propagation PCI

Increasing distance from sample

Near Field Far Field

Requires: High coherence x-ray source,
High resolution detectors (tens of um)




Grating Interferometry PCI

X-ray 9

source

1 /

Detector

P
O
O

Talbot-Lau interferometer
Multiple highly precise measurements required

Requires gratings of very small period < 5um



Aperture (CA) PCI

Coded

A. Olivo, UC London




Sample Detector
mask mask

. sample

Detector

An edge-illumination effect is created using a pair of

mutually displaced masks
- Refraction effect ; not Interference



PCI Image




Effect of Object Thickness on PCI Signal
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Zebra Fish- Spectral PCI

Non-Phase Contrast Phase Contrast Phase Contrast
~25keV 30-100keV




Spectral Phase Retrieval

Absorption and phase change due to propagation creates
Intensity variations

R, V2
I(R,,E) = I(R, E) (1 — 2k ¢)

I(R1»E3': Iy(Ry, E) eXP(‘j#(E)dZ)

W(E) = NK eSZ(E) b N Zorn ()

Gursoy, Das (2013) Photoelectric  Compton Scatter




Single-Step Spectral PCI




May 1, 2013 / Vol. 38, No. 9 / OPTICS LETTERS 1461

Single-step absorption and phase retrieval with
polychromatic x rays using a spectral detector

Doga Giirsoy and Mini Das*

Department of Physics, University of Houston, Houston 77204, USA
*Corresponding author: mdas@uh.edu

Received January 17, 2013; revised March 17, 2013; accepted March 19, 2013;
posted April 2, 2013 (Doc. ID 183047); published April 26, 2013

In this Letter, we present a single-step method to simultaneously retrieve x-ray absorption and phase images valid
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Single-Step Retrieval of Absorption, Phase and
____________________________________________________________ Differential Phase (Projection Image).
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November 1, 2014 / Vol. 39, No. 21 / OPTICS LETTERS 6343

Spectral x-ray phase contrast imaging for single-shot
retrieval of absorption,
phase, and differential-phase imagery

Mini Das™* and Zhihua Liang?®
'Department of Physics, University of Houston, Houston, Texas 77004, USA

’Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
*Corresponding author: mdas@uh.edu
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September 15, 2014 / Vol. 39, No. 18 / OPTICS LETTERS 5395

Approximated transport-of-intensity equation for
coded-aperture x-ray phase-contrast imaging

Mini Das* and Zhihua Liang

Department of Physics, University of Houston, Houston, Texas 77204, USA
*Corresponding author: mdas@uh.edu

Received June 16, 2014; revised July 30, 2014; accepted July 30, 2014;
posted August 4, 2014 (Doc. ID 214101); published September 12, 2014

Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the
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Low-Photon Count Phase Retrieval
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Photon Counting Spectral Detectors

Bias Voltage

Detector substrate (Si)

ancer Education (Houston), 2019
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Vespucci, Das (2019) IEEE Transactions of

Medical Imaging




Pulse Pile-up

True and
observed
pulses

Detector’s Inactive
state

Active

Events on
a detector




Charge Sharing

X-Ray fluorescence - Zr

(a) Top View . .
(b) Side View 4
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Sensor Material

CdTe Sensor

Crystal defects
Temporal instability
Thermal instability
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Single Quantum Processing

Medipix Collaboration (CERN eva) sensar chip o sicon)

high resistivity n-type silicon

p-type
silicon layer

Medipix3RX — Current version et

solder bumps

Flux tolerance ~ 70 million photons/second/mm?

electronics chip single pixel

read-out cell

Includes charge sharing correction hardware
2 — 8 energy bins at once

Timepix — Time of arrival of detected photons

Time over Threshold (TOT Operation)



Physical Basis Functions

u(E,r) = fph (E)aph('?) + fe(B)ac(r) + fr(E)ag(r)

Photoelectric Absorption
Compton Scattering

K-edge Material




Image Domain Material Decomposition

H(E,T)=,(E) 1,(F) + 1, (E) 1,(7) + 15 (E) 15(7) +...

u(E,r): Linear attenuation coefficient[1/ cm]

w,, (E,r): Mass attenuation coefficient[ g / cc]

r) :Volume fraction|0 -1
/() /! ] | =\/olume Fraction Material #1

Volume Fraction Material #2
Volume Fraction Material #3
o, f.(F; 0, £,()+ Lty 3(E) o3 f3(f']}+...




Single-Step Decomposition
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Multi-Material Decomposition in Single Step

Multi-Step Volume Fractions

Nate Fredette et al. , SPIE (2017), PMB (2019)




Experimental Results

Multi-step Material
Decomposition:
Fredette, Kavuri, Das
(2017)(2019)

Applications:

Targeted drug delivery,
Multi-contrast imaging
Chemical imaging




Silicon detector, 55 micrometer pitch

0.0 1.010.0 1.010.0 1.010.0 1.010.0

CdTe, 110 micrometer

Highlighted In

Feature Article “X-Ray Images

in Full Color

Nature Reviews Physics (2019) : 1.010.0

1.010.0 1.010.0 1.010.0



lodine, Gd, water, Ca In plastic




Psychophysics

Will lesion detectability improve with these emerging
modalities?

Task-based assessments




DBT- Image Acquisition and
ala t: 1

Three different densities of
phantoms

- 25%, 50%, 75%

Projections acquired over four
different arc spans

30°, 45°, 60°, 75°

For each arc span, we
considered a number of
projections ranging from 3 to
51



Localization Receiver Operating Characteristic

Area Under LROC Curve (60°, 25% + 50% + 75% dense)

LROC curve describes
how well a human
observer is able

to detect a signal

Das, Gifford (2016)
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Texture Assessment
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Texture and Perception?

Statistical featured
computed in the Image

Nisbett, Das (2018)

Projection Number Projection Number




Observer Surrogates?

Mathematical observer models (Gifford)
Texture features. (Nisbett, Das (2017), (2018)
Power spectral parameters (beta- anatomic noise)

Physics of imaging - building blocks of machine
learning tools




summary

Quantitative phase contrast imaging
Spectral detectors

Perception and image science will play an integral
role in future device and algorithmic developments

Towards X-ray microscopy with Timepix
Color X-Ray




Research Opportunities

Physics and engineering — experiments, models
Computer Science — Image reconstruction, ML
- Breast Images, Pathology ...

Biochemistry- Contrast Enhanced Imaging
Mathematics- Inverse Problems
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